Friday, July 03, 2009

Java BlockingQueue and threading

A Queue that additionally supports operations that wait for the queue to become non-empty when retrieving an element, and wait for space to become available in the queue when storing an element.

A BlockingQueue does not accept null elements. Implementations throw NullPointerException on attempts to add, put or offer a null. A null is used as a sentinel value to indicate failure of poll operations.

A BlockingQueue may be capacity bounded. At any given time it may have a remainingCapacity beyond which no additional elements can be put without blocking. A BlockingQueue without any intrinsic capacity constraints always reports a remaining capacity of Integer.MAX_VALUE.

BlockingQueue implementations are designed to be used primarily for producer-consumer queues, but additionally support the Collection interface. So, for example, it is possible to remove an arbitrary element from a queue using remove(x). However, such operations are in general not performed very efficiently, and are intended for only occasional use, such as when a queued message is cancelled.

BlockingQueue implementations are thread-safe. All queuing methods achieve their effects atomically using internal locks or other forms of concurrency control. However, the bulk Collection operations addAll, containsAll, retainAll and removeAll are not necessarily performed atomically unless specified otherwise in an implementation. So it is possible, for example, for addAll(c) to fail (throwing an exception) after adding only some of the elements in c.

A BlockingQueue does not intrinsically support any kind of "close" or "shutdown" operation to indicate that no more items will be added. The needs and usage of such features tend to be implementation-dependent. For example, a common tactic is for producers to insert special end-of-stream or poison objects, that are interpreted accordingly when taken by consumers.

Usage example, based on a typical producer-consumer scenario. Note that a BlockingQueue can safely be used with multiple producers and multiple consumers.

class Producer implements Runnable {
private final BlockingQueue queue;
Producer(BlockingQueue q) { queue = q; }
public void run() {
try {
while(true) { queue.put(produce()); }
} catch (InterruptedException ex) { ... handle ...}
}
Object produce() { ... }
}

class Consumer implements Runnable {
private final BlockingQueue queue;
Consumer(BlockingQueue q) { queue = q; }
public void run() {
try {
while(true) { consume(queue.take()); }
} catch (InterruptedException ex) { ... handle ...}
}
void consume(Object x) { ... }
}

class Setup {
void main() {
BlockingQueue q = new SomeQueueImplementation();
Producer p = new Producer(q);
Consumer c1 = new Consumer(q);
Consumer c2 = new Consumer(q);
new Thread(p).start();
new Thread(c1).start();
new Thread(c2).start();
}
}

Taken from Here

No comments: